第三章:二叉树问题
树形dp套路
在做树结构的题目中,如果求解规则可以分为,以某个节点为子树,先向左要数据,再向右要数据,最后返回总数据,我们就可以使用该套路。
递归进行遍历
public static void QTraverse2(Point tree) { if (tree == null) { return; } System.out.println("先序"); QTraverse2(tree.left); System.out.println("中序"); QTraverse2(tree.right); System.out.println("后续"); }
非递归进行遍历
//非递归前序遍历 使用栈 public static void QTraverse1(Point tree) { Stack<Point> stack = new Stack<>(); stack.add(tree); while (!stack.isEmpty()) { Point pop = stack.pop(); System.out.print(pop.value + " "); if (pop.right != null) { stack.add(pop.right); } if (pop.left != null) { stack.add(pop.left); } } } //非递归中序遍历 public static void ZTraverse1(Point tree) { Stack<Point> stack = new Stack<>(); stack.add(tree); while (!stack.isEmpty()) { while (tree.left != null) { stack.add(tree.left); tree = tree.left; } Point pop = stack.pop(); System.out.print(pop.value + " "); if (pop.right != null) { stack.add(pop.right); tree = pop.right; } } } //非递归后序遍历 public static void HTraverse1(Point tree) { Stack<Point> stack = new Stack<>(); Stack<Point> stack1 = new Stack<>(); stack.add(tree); while (!stack.isEmpty()) { Point pop = stack.pop(); stack1.add(pop); if (pop.left != null) { stack.add(pop.left); } if (pop.right != null) { stack.add(pop.right); } } while (!stack1.isEmpty()) { System.out.print(stack1.pop().value + " "); } }
宽度遍历
//宽度遍历 也就是将二叉树一行一行的遍历 public static void WideTraverse(Point tree) { //关键就是我们需要知道我们遍历节点的层数 我们可以使用LinkedList(Java提供的队列 先进先出) LinkedList<Point> list = new LinkedList<>(); list.add(tree); while (!list.isEmpty()) { Point pop = list.pop(); System.out.print(pop.value + " "); if (pop.left != null) { list.add(pop.left); } if (pop.right != null) { list.add(pop.right); } } }
求二叉树的宽度
//求二叉树的宽度 也就是求出整棵树哪一行的节点最多 使用map和栈(不灵活) public static void GetWid(Point tree) { HashMap<Point, Integer> map = new HashMap<>(); map.put(tree, 1); Stack<Point> stack = new Stack<>(); stack.add(tree); int flor = 0; while (!stack.isEmpty()) { Point pop = stack.pop(); //从栈中pop出的元素的层数 Integer num = map.get(pop); System.out.println(pop.value + " 层数:" + num); if (num > flor) { flor = num; } if (pop.right != null) { map.put(pop.right, num + 1); stack.add(pop.right); } if (pop.left != null) { map.put(pop.left, num + 1); stack.add(pop.left); } } //所有层的元素个数已经统计出 也知道有多少层了 int[] ints = new int[flor + 1]; Set<Map.Entry<Point, Integer>> entries = map.entrySet(); for (Map.Entry<Point, Integer> entry : entries) { ints[entry.getValue()] = ints[entry.getValue()] += 1; } int max = 0; for (int anInt : ints) { if (anInt > max) { max = anInt; } } System.out.println("最大节点数:" + max); } //求二叉树的宽度 使用队列和map public static void GetWidByLinkedList(Point tree) { LinkedList<Point> list = new LinkedList<>(); HashMap<Point, Integer> map = new HashMap<>(); list.add(tree); map.put(tree, 1); //当前所在行 int curLevel = 1; //所在行节点数 int curNum = 0; //整棵树最多节点 int max = -1; while (!list.isEmpty()) { Point pop = list.pop(); Integer level = map.get(pop); if (level == curLevel) { curNum++; } else { max = Math.max(max, curNum); curNum = 1; curLevel = level; } if (pop.left != null) { map.put(pop.left, level + 1); list.add(pop.left); } if (pop.right != null) { map.put(pop.right, level + 1); list.add(pop.right); } } System.out.println("最多节点数:" + Math.max(max, curNum)); }
判断是否为搜索二叉树
//判断二叉树为搜索二叉树 左子节点的值 <= 当前节点的值 <= 右子节点的值 public static void isSearchTree(Point tree) { //使用中序遍历 if (tree == null) { return; } if (tree.left != null) { if (tree.left.value >= tree.value) { System.out.println("不是搜索二叉树"); return; } isSearchTree(tree.left); } if (tree.right != null) { if (tree.value <= tree.right.value) { System.out.println("不是搜索二叉树"); return; } isSearchTree(tree.right); } System.out.println("是搜索二叉树"); }
判断是否为完整二叉树
//判断是否为完全二叉树 也就是要树是完整拥有左右子节点的 ,要么从左至右 填补叶节点 public static void isCompleteBinaryTree(Point tree) { //1.只要有右不左子节点 就是说明不是 //2.满足1条件后,如果遇到只有左子节点的,则同层节点后面必须没有子节点 //需要宽度遍历 使用队列 LinkedList<Point> list = new LinkedList<>(); list.add(tree); Point test = new Point(); Point finPoint = test; while (!list.isEmpty()) { Point pop = list.pop(); if (pop == finPoint) { if (!list.isEmpty()) { System.out.println("不是完全二叉树"); return; } } if (pop.left == null && pop.right != null) { System.out.println("不是完全二叉树"); return; } if (pop.left != null) { list.add(pop.left); if (test == finPoint && pop.right == null) { finPoint = pop.left; } } if (pop.right != null) { list.add(pop.right); } } System.out.println("是完全二叉树"); }
套路判断是否为搜索二叉树
//用二叉树套路解决是否为搜索二叉树 public static void isSearchTreeByMethod(Point tree) { //左边为搜索二叉树 //右边为搜索二叉树 //左边值<当前值<右边值 所以我们需要知道左右两边的值 使用后序遍历 boolean isSearch = process(tree).isSearch; System.out.println(isSearch?"是搜索二叉树":"不是搜索二叉树"); } public static class ReturnType{ int min; int max; boolean isSearch; public ReturnType(int min,int max,boolean isSearch) { this.min = min; this.max = max; this.isSearch = isSearch; } } public static ReturnType process(Point head) { if (head==null) { return null; } ReturnType LeftData = process(head.left); ReturnType RightData = process(head.right); int min = head.value; int max = head.value; if (head.left!=null) { //当前值 与 左节点的最小值 比较 min = Math.min(min,LeftData.min); //当前值 与 左节点的最大值 比较 max = Math.max(max, LeftData.max); } if (head.right!=null) { //最小值 与 右节点的最小值 比较 min = Math.min(min,RightData.min); //最大值 与 右节点的最大值 比较 max = Math.max(max,RightData.max); } boolean isSearch = true; if (LeftData!=null&&(!LeftData.isSearch||LeftData.max >= head.value)) { isSearch = false; } if (RightData!=null&&(!RightData.isSearch||RightData.min<= head.value)) { isSearch = false; } return new ReturnType(min,max,isSearch); }
套路判断是否为完全二叉树
//用套路解决是否为完全二叉树 public static void isCBT(Point tree) { ReturnType process = process(tree); System.out.println(process.isCBT?"是完全二叉树":"不是完全二叉树"); } public static class ReturnType { //节点高度 int high; //节点个数 int Num; //是否为完全二叉树 boolean isCBT; public ReturnType(int high, int num, boolean isCBT) { this.high = high; Num = num; this.isCBT = isCBT; } } public static ReturnType process(Point head) { if (head == null) { return new ReturnType(0, 0, true); } ReturnType leftData = null ; ReturnType rightData = null ; int high = 1; int num = 1; boolean isCBT = false; if (head.left != null && head.right!=null) { leftData = process(head.left); rightData = process(head.right); high = leftData.high+1; num = leftData.Num+ rightData.Num+1; if (!leftData.isCBT||!rightData.isCBT) { return new ReturnType(high,num,false); } //层数 与 节点个数呈 N=2^L - 1 if ((2^high-1)==num) { isCBT = true; } } return new ReturnType(high, num, isCBT); }
套路寻找两个节点的交汇处,也就是给出一个树,给两个点,寻找点的共同交汇处
//寻找两个节点的交会点 public static Point FindCommon (Point head,Point node1,Point node2) { if (head == null||head == node1||head == node2) { return head; } Point left = FindCommon(head.left, node1, node2); Point right = FindCommon(head.right, node1, node2); if (left!=null&&right!=null) { return head; } return left==null?right:left; }
二叉树节点间的最大距离(从树上某个点到另一个点最大距离,一个点到相邻一个点的距离为1)
//二叉树节点间最大距离 public static ReturnTypeByMaxLen maxLength(Point hear) { if (hear == null) { return new ReturnTypeByMaxLen(0,0); } ReturnTypeByMaxLen left = maxLength(hear.left); ReturnTypeByMaxLen right = maxLength(hear.right); //当前节点不参与 左节点最大距离 与 右节点最大距离比较 int maxDistance = Math.max(left.maxConnect, right.maxConnect); //最大距离值与当前节点参与时 进行比较 maxDistance = Math.max(maxDistance, left.maxDeepLen+1+ right.maxDeepLen); //向上一层 深度+1 return new ReturnTypeByMaxLen(Math.max(left.maxDeepLen, right.maxDeepLen)+1,maxDistance); } public static class ReturnTypeByMaxLen { //最大深度 int maxDeepLen; //节点最大距离 int maxConnect; public ReturnTypeByMaxLen(int maxDeepLen, int maxConnect) { this.maxDeepLen = maxDeepLen; this.maxConnect = maxConnect; } }
派顿最大快乐值(多叉树)
//派顿最大快乐值(多叉树) public static ReturnTypeByMaxHappy MaxHappy(Employee employee) { if (employee.subordinates.isEmpty()) { return new ReturnTypeByMaxHappy(employee.happy, 0); } //如果当前节点来 返回值 int lai = employee.happy; //不来 int bu = 0; for (Employee subordinate : employee.subordinates) { ReturnTypeByMaxHappy ret = MaxHappy(subordinate); //如果我来 底下人不能来 lai += ret.buMaxHappy; //如果我不来 底下人可以来可以不来 取最大值 bu += Math.max(ret.laiMaxHappy, ret.buMaxHappy); } return new ReturnTypeByMaxHappy(lai,bu); } public static class ReturnTypeByMaxHappy{ int laiMaxHappy; int buMaxHappy; public ReturnTypeByMaxHappy(int laiMaxHappy, int buMaxHappy) { this.laiMaxHappy = laiMaxHappy; this.buMaxHappy = buMaxHappy; } } class Employee{ int happy; //该员工的快乐值 List<Employee> subordinates; //直接下级 public Employee(int happy, List<Employee> subordinates) { this.happy = happy; this.subordinates = subordinates; } }
树结构Morris遍历
我们能不能做到遍历整棵树,时间复杂度为o(n),空间复杂度为o(1),利用原树种大量空闲指针
很多关于树结构的题,以morris为基础求出最优解。(笔试还是用正常的遍历就好,错误率低)
利用morris进行遍历树结构
//Morris先序遍历 public static void Morris_F(tree node) { tree cur = node; tree mostRight = null; while (cur !=null) { if (cur.left != null) { mostRight = cur.left; while (mostRight.right!=null&&mostRight.right!=cur) { mostRight = mostRight.right; } if (mostRight.right == null) { mostRight.right = cur; cur = cur.left; } else { //这里说明是遍历到cur第一次 System.out.println(cur.value); mostRight.right = node; cur = cur.right; } } else { //这里说明是最底层节点 没有左节点 在右转前输出一次 System.out.println(cur.value); cur = cur.right; } } } //Morris中序遍历 public static void Morris_M(tree node) { tree cur = node; tree mostRight = null; while (cur != null) { if (cur.left!=null) { mostRight = cur.left; while (mostRight.right!=null&&mostRight.right!=cur) { mostRight = mostRight.right; } if (mostRight.right == null) { mostRight.right = cur; cur = cur.left; continue; } else { mostRight.right = null; } } System.out.println(cur.value); cur = cur.right; } }
dp套路与Morris套路什么时候使用
当我们的方法必须做第三次信息的强整合,也就是说我最后的决策必须依赖于左右两边的信息,我们使用dp套路,因为Morris每个点只返回两次。
如果不需要则就可以使用Morris。
本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 玲辰书斋!